cellphonedb Algorithm
Purpose
Use cellphonedb for cell communication analysis
Usage
SDAS CCI cellphonedb -i st.h5ad --label_key anno_spotlight -o outdir \
--method statistical \
--counts_data hgnc_symbol \
--species human
Input Parameter Description
-i / --input
Yes
h5ad file, must contain raw expression matrix
-o / --output
Yes
Output folder
--label_key
Yes
Column name used to distinguish cell types in cell communication analysis
--method
No
statistical
Analysis method, options: simple, statistical, degs
--layer
No
Name of the layer in h5ad containing the raw expression matrix
--counts_data
No
hgnc_symbol
Type of var.index in the adata: 'ensembl', 'gene_name', 'hgnc_symbol'
--threshold
No
0.1
Percentage of cells expressing the specific ligand/receptor [0.0 - 1.0]
--species
No
human
SDAS built-in cellphonedb human database, version v5.0.0; when --cellphonedb_database is specified, this parameter is ignored
--cellphonedb_database
No
Path to user-defined cellphonedb database file
--pvalue
No
0.05
Significance threshold (filtering interactions with p ≤ pvalue), parameter for method=statistical
--subsampling
No
Whether to subsample, parameter for method=statistical
--subsampling_num_cells
No
Number of cells to subsample to [1/3 of cells], effective when using --subsampling, parameter for method=statistical
--microenvs_file_path
No
Path to microenvironment file (two columns: cell type, spatial microenvironment)
--active_tfs_file_path
No
Path to active transcription factor file (two columns: cell type, TF)
--degs_file_path
No
Path to differentially expressed gene file (two columns: cell type, DEG), required for method=degs
--n_cpus
No
8
Number of threads
--seed
No
42
Random seed
Output Results Display
simple_analysis_means_result_<input_name>.txt
statistical_analysis_means_result_<input_name>.txt
degs_analysis_means_result_<input_name>.txt
Matrix of average expression for all ligand-receptor pairs. Each row is a ligand-receptor pair, each column is a cell type combination, value is average expression
simple_analysis_deconvoluted_<input_name>.txt
statistical_analysis_deconvoluted_<input_name>.txt
degs_analysis_deconvoluted_<input_name>.txt
Average expression of each cell type, used to show the expression of each cell type
simple_analysis_deconvoluted_percents_<input_name>.txt
statistical_analysis_deconvoluted_percents_<input_name>.txt
degs_analysis_deconvoluted_percents_<input_name>.txt
Expression ratio of each cell type, reflecting the percentage of each ligand-receptor pair in different cell types
simple_analysis_interaction_scores_<input_name>.txt
statistical_analysis_interaction_scores_<input_name>.txt
degs_analysis_interaction_scores_<input_name>.txt
Interaction strength score between cell types, the larger the value, the stronger the ligand-receptor interaction
statistical_analysis_significant_means_<input_name>.txt
degs_analysis_significant_means_<input_name>.txt
Average expression of significant interactions
statistical_analysis_pvalues_<input_name>.txt
Matrix of significance p-values for all ligand-receptor pairs under statistical method
cellphonedb_heatmap_<input_name>.png/pdf
Heatmap of significant interactions, showing the strength of significant ligand-receptor interactions between all cell clusters, color depth reflects interaction strength, output when method=statistical and degs
Heatmap of significant interactions output by cellphonedb:
cellphonedb_heatmap_<input_name>.png/pdf
shows the heatmap of significant ligand-receptor interactions between all cell clusters, color depth reflects interaction strength. Both axes are cell clusters, color depth indicates interaction strength, the deeper the color, the stronger the interaction. Quickly compare the activity of communication between different cell clusters.

Last updated