Cell Type Score Mode
Purpose
multiCelltypeScore
uses the cell type annotation scores, such as the scores obtained from cell annotation deconvolution, to identify and characterize microenvironments with specific cell compositions and spatial distribution patterns within tissues.
Usage
SDAS cellularNeighborhood multiCelltypeScore -i st.h5ad --bin_size 100 -o outdir --score_key anno_score_cell2location \
--label_key anno_cell2location \
--cluster_method Kmeans
Input Parameter Description
-i / --input
Yes
Stereo-seq h5ad, containing cell type annotation results
-o / --output
Yes
Output folder
--bin_size
Yes
Bin size, used to control the size of points in the plot, not used for calculation, e.g., 20, 50, 100, cellbin (equivalent to 20)
--score_key
Yes
Column name in h5ad.obsm representing cell type score, must be a dataframe with header
--slice_key
No
Column name in h5ad.obs representing slice ID, used for window statistics and plotting in multi-slice analysis
--cluster_method
No
Kmeans
Clustering method, only Kmeans is available for singleCelltype mode; multi celltype score can choose leiden or Kmeans
--resolution
No
0.4
Resolution for leiden clustering when cluster_method is leiden; for bin20 or cellbin data, recommend resolution <0.1
--n_clusters
No
8
Number of clusters for Kmeans when cluster_method is Kmeans
--seed
No
42
Random seed
--label_key
No
Column name in h5ad.obs representing cell type annotation; if specified, neighborhood enrichment analysis for each CN will be performed
adata.obsm[score_key]
file format example: header is cell type
adata.obsm[score_key]
file format example: header is cell type

Output Results Display
For detailed explanation and specific output results, please refer to the following link. (Single Cell Type Mode --> Output Results Display)
Parameter Tuning Suggestions
For detailed explanation, please refer to the following link. (Single Cell Type Mode --> Parameter Tuning Suggestions)
Last updated