Cell Type Score Mode

Purpose

multiCelltypeScore uses the cell type annotation scores, such as the scores obtained from cell annotation deconvolution, to identify and characterize microenvironments with specific cell compositions and spatial distribution patterns within tissues.

Usage

SDAS cellularNeighborhood multiCelltypeScore -i st.h5ad --bin_size 100 -o outdir --score_key anno_score_cell2location \
--label_key anno_cell2location \
--cluster_method Kmeans

Input Parameter Description

Parameter
Required
Default
Description

-i / --input

Yes

Stereo-seq h5ad, containing cell type annotation results

-o / --output

Yes

Output folder

--bin_size

Yes

Bin size, used to control the size of points in the plot, not used for calculation, e.g., 20, 50, 100, cellbin (equivalent to 20)

--score_key

Yes

Column name in h5ad.obsm representing cell type score, must be a dataframe with header

--slice_key

No

Column name in h5ad.obs representing slice ID, used for window statistics and plotting in multi-slice analysis

--cluster_method

No

Kmeans

Clustering method, only Kmeans is available for singleCelltype mode; multi celltype score can choose leiden or Kmeans

--resolution

No

0.4

Resolution for leiden clustering when cluster_method is leiden; for bin20 or cellbin data, recommend resolution <0.1

--n_clusters

No

8

Number of clusters for Kmeans when cluster_method is Kmeans

--seed

No

42

Random seed

--label_key

No

Column name in h5ad.obs representing cell type annotation; if specified, neighborhood enrichment analysis for each CN will be performed

adata.obsm[score_key] file format example: header is cell type

Output Results Display

For detailed explanation and specific output results, please refer to the following link. (Single Cell Type Mode --> Output Results Display)

Parameter Tuning Suggestions

For detailed explanation, please refer to the following link. (Single Cell Type Mode --> Parameter Tuning Suggestions)

Last updated