简介

​​细胞注释旨在通过分析细胞的基因表达谱,将细胞准确分类并确定其生物学身份 (如细胞类型、状态或亚群),从而解读数据的生物学意义、揭示组织或样本的细胞组成和功能异质性,并为包括细胞邻域分析CNV分析细胞通讯分析轨迹分析细胞空间距离关系分析差异基因分析转录因子分析在内的多种下游分析提供分类基础。​

算法测评经验

  • 如果希望快速获得结果,建议首先尝试使用Tangram或RCTD,对于没有单细胞参考的人类样本也可以先尝试SCimilarity。如果需要更准确的注释结果且有GPU资源,建议使用cell2location。详细算法测评信息,请参考此链接

算法
性能
内存
时间
GPU 加速

cell2location

⭐⭐⭐⭐⭐

⭐⭐

无 GPU 时极其慢

RCTD

⭐⭐⭐⭐

(排除未注释细胞)

⭐⭐⭐

⭐⭐⭐

Tangram

⭐⭐⭐

⭐⭐⭐⭐

⭐⭐⭐⭐

CPU上速度较快,且可用 GPU加速

SPOTlight

⭐⭐

⭐⭐

SCimilarity

⭐⭐⭐⭐⭐

⭐⭐⭐⭐⭐

CPU上速度很快。可用 GPU加速,但效果不明显

模块算法整体介绍

参考文献

  • Biancalani, T., Scalia, G., Buffoni, L., Avasthi, R., Lu, Z., Sanger, A., ... & Regev, A. (2021). Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature methods, 18(11), 1352-1362.

  • Cable, D. M., Murray, E., Zou, L. S., Goeva, A., Macosko, E. Z., Chen, F., & Irizarry, R. A. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nature biotechnology, 40(4), 517-526.

  • Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I., & Heyn, H. (2021). SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic acids research, 49(9), e50-e50.

  • Heimberg, G., Kuo, T., DePianto, D. J., Salem, O., Heigl, T., Diamant, N., ... & Regev, A. (2025). A cell atlas foundation model for scalable search of similar human cells. Nature, 638(8052), 1085-1094.

  • Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H. W., Li, T., ... & Bayraktar, O. A. (2022). Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology, 40(5), 661-671.

Last updated