InferCNV Algorithm
Purpose
The inferCNV tool is used to infer copy number variations (CNVs) from spatial transcriptomics data, helping to reveal genomic variation characteristics in different tissue regions. This tool can also perform CNV inference on scRNA-Seq data.
Usage
Use the h5ad after cell annotation, prepare the rds file:
SDAS dataProcess h5ad2rds -i st.h5ad -o outdir
Run inferCNV
SDAS infercnv -i st.rds --h5ad st.h5ad --bin_size 50 --slice_key batch \
-o outdir --label_key anno_cell2location --species human \
--ref_group_names B,T --min_counts_per_cell 200
Input Parameter Description
--run_mode
No
stRNA
Choose spatial transcriptomics (stRNA) or single-cell (scRNA) mode
-i / --input
Yes
Input Stereo-seq or scRNA data in Seurat rds format, must contain the raw expression matrix
-o / --output
Yes
Output directory containing all results
--h5ad
Yes
h5ad format sample.h5ad, used for spatial heatmap (not required for scRNA mode)
--bin_size
Yes
Bin size, controls spatial heatmap spot size (e.g., 20, 50, 100), not required for scRNA mode
--label_key
Yes
The annotations field, containing cell type or grouping information in rds metadata
--ref_group_names
No
Reference group names, specify normal cell/sample groups, by default uses all cells (not recommended)
--gene_order_file
No
Data file containing the positions of each gene along each chromosome in the genome, tab-delimited
--cluster_heatmap
No
False
Whether to cluster CNV heatmap, True or False
--species
No
human
Gene location for the specified species (options: human or mouse, default: human). This parameter is invalid when --gene_order_file is set
--slice_key
No
sampleID
Column name in h5ad.obs indicating slice number for multiple slices
--gene_symbol_key
No
real_gene_name
The key of gene symbol in meta.data, If set to '_index', treat rownames in rds file as gene symbol
--assay
No
Assay name in rds used for CNV calculation, if not set, use default assay
--cutoff
No
0.02
Cut-off for the min average read counts per gene among reference cells/bins
--min_counts_per_cell
No
100
Mimimun counts allowed per cell/bins
Output Results
<input_name>_run.final.infercnv_obj.rds
rds object containing the CNV matrix for all genes and spots
<input_name>_CNV_score.csv
CNV score for each spot
<input_name>_CNV_ref.png/pdf
CNV expression heatmap for reference cells (not output if ref_group_names is None)
<input_name>_CNV_obs.png/pdf
CNV expression heatmap for observed cells
<input_name>_CNV_score.png/pdf
Spatial heatmap of CNV score (one per slice for multiple slices, not output in scRNA mode)
CNV Expression Heatmap for Reference Cells:
<input_name>_CNV_ref.png/pdf
X-axis: spot, Y-axis: gene, color: CNV intensity

CNV Expression Heatmap for Observed Cells:
<input_name>_CNV_obs.png/pdf
X-axis: spot, Y-axis: gene, color: CNV intensity--cluster_heatmap
False
: Spots are not clustered

--cluster_heatmap
True
: Spots are clustered

Spatial Heatmap of CNV Score:
<input_name>_CNV_score.png/pdf
Color indicates CNV intensity

CNV Score Text File:
<input_name>_CNV_score.csv
, higher values indicate stronger CNV intensity
429496737600_D03663C6
0.0018
429496737700_D03663C6
0.0015
429496737800_D03663C6
0.0031
...
...
Last updated