monocle3 Algorithm
Purpose
Use the monocle3 algorithm to perform trajectory inference on spatial transcriptomics and single-cell data, automatically outputting various trajectory-related results.
Usage
Use the h5ad after annotation, prepare the rds file:
SDAS dataProcess h5ad2rds -i st.h5ad -o outdir
Run monocle3:
SDAS trajectory monocle3 -i st.rds -o outdir --root_key anno_spotlight --root CAF_DES \
--gene_symbol_key real_gene_name \
--batch_key sampleID
Input Parameter Description
-i / --input
Yes
rds file, must contain raw expression matrix
-o / --output
Yes
Output folder
--root_key
Yes
Column name in meta.data where the root node is located
--root
Yes
Name of the root node
--assay
No
Assay name, if not set uses default assay
--gene_symbol_key
No
real_gene_name
Column name for gene symbol in meta.features, _index means using matrix rownames
--batch_key
No
Column name in meta.data for batch correction, if not set, no batch correction
--resolution
No
Resolution parameter for leiden clustering, if not set, algorithm will auto-fit
--use_existing_umap_cluster
No
Use existing umap and cluster information in rds
--umap_key
No
umap
Name of the field storing umap information in input rds
--cluster_key
No
leiden
Name of the field storing cluster information in input rds
--deg
No
Analyze differentially expressed genes along pseudotime, specify "--deg" to enable
--n_cpus
No
8
Number of threads
--top_gene_num
No
5
Number of top differentially expressed genes to plot along pseudotime
--gene_file
No
Path to custom gene list file,draw gene expression along pseudotime, separated by commas
--gene_color_label
No
pseudotime
Column name to color gene plots
--pval_cutoff
No
0.05
Identified the genes that were significantly (pval < pval_cutoff) spatially autocorrelated along the trajectory
--qval_cutoff
No
0.05
Identified the genes that were significantly (qval < qval_cutoff) spatially autocorrelated along the trajectory
--seed
No
42
Random seed
Output Results Display
<input_name>_dimension.png/pdf
Dimension reduction plot, shows cell distribution in low-dimensional space
<input_name>_dimension_color_by_batch.png/pdf
Dimension reduction plot colored by batch (output if batch correction is performed), used to evaluate batch effect
<input_name>_cluster.png/pdf
Clustering plot, shows cell cluster distribution
<input_name>_roots.png/pdf
Root plot, shows the location of the root node in trajectory analysis
<input_name>_pseudotime.png/pdf
Pseudotime plot, shows the distribution of cell pseudotime
<input_name>_top_genes_in_pseudotime.png/pdf
Expression trend plot of top genes along pseudotime
<input_name>_custom_genes_in_pseudotime.png/pdf
Expression trend plot of custom genes along pseudotime
<input_name>_monocle3.rds
rds file containing trajectory analysis results
<input_name>_pseudotime.csv
Pseudotime results for each cell, records the pseudotime value of each cell
<input_name>_deg_trajectory.xls
Results of all genes changing along pseudotime
Dimension reduction plot:
<input_name>_dimension.png/pdf
shows the cell distribution structure in low-dimensional space, reflecting overall heterogeneity and clustering structure

Clustering plot:
<input_name>_cluster.png/pdf
shows the distribution of cell clusters, reflecting overall heterogeneity and clustering structure

Root plot:
<input_name>_roots.png/pdf
shows the root node in trajectory analysis, marking the starting point (root node) of trajectory inference, used for subsequent pseudotime ordering

Pseudotime plot:
<input_name>_pseudotime.png/pdf
shows the distribution of cell pseudotime, cells are colored by predicted developmental/differentiation order, reflecting dynamic changes

Top gene expression trend plot along pseudotime:
<input_name>_top_genes_in_pseudotime.png/pdf
shows the most significant top gene expression trends along pseudotime

Custom gene expression trend plot along pseudotime:
<input_name>_custom_genes_in_pseudotime.png/pdf
shows the expression trends of user-specified genes along pseudotime

Parameter Tuning Recommendations
Trajectory analysis with monocle3 generally requires accurate annotation of cell subtypes. Through subtype partitioning, the algorithm can exclude irrelevant cell noise and focus on cell populations with developmental continuity, thereby inferring biologically logical differentiation paths. In practical analysis, it is recommended to select specific cell populations rather than analyzing the entire section, which can also reduce runtime and memory usage.
Last updated